0
754views
Given a sequence $x(n)$ for $0 \leq n \leq 3$, where $x(0)=1, x(1)=3, x(2)=3$, and $x(3)=4$. Evaluate its DFT $X(k)$.
1 Answer
0
26views

Solution:

Since $N=4, W_4=\mathrm{e}^{-\mathrm{j} \pi / 2}$, then using:

$ X(k)=\sum_{n=0}^3 x(n) W_4^{k n}=\sum_{n=0}^3 x(n) e^{-j \frac{\pi k n}{2}}\\ $

Thus, for $k=0$

$ \begin{aligned} & X(0)=\sum_{n=0}^3 x(n) e^{-j 0}=x(0) e^{-j 0}+x(1) e^{-j 0}+x(2) e^{-j 0}+x(3) e^{-j 0} \\\\ &=x(0)+x(1)+x(2)+x(3) \\\\ &=1+2+3+4=10 \\\\ & \text { for } k=1 \\\\ …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.