0
3.6kviews
Draw rough sketch and explain how flat-plate collector can be useful in tapping solar energy?
1 Answer
0
38views

In today's climate of growing energy needs and increasing environmental concern, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy.

Solar energy is quite simply the energy produced directly by the sun and collected elsewhere, normally the Earth. Much of the world's required energy can be supplied directly by solar power. Due to the nature of solar energy, two components are required to have a functional solar energy generator. These two components are a collector and a storage unit. The collector simply collects the radiation that falls on it and converts a fraction of it to other forms of energy (either electricity and heat or heat alone). The storage unit is required because of the non-constant nature of solar energy; at certain times only a very small amount of radiation will be received. At night or during heavy cloud cover, for eg.the amount of energy produced by the collector will be quite small. The storage unit can hold the excess energy produced during the periods of maximum productivity, and release it when the productivity drops. In practice, a backup power supply is usually added too, for the situations when the amount of energy required is greater than both what is being produced and what is stored in the container.

enter image description here

Flate plate collector useful in tapping solar energy. A typical flat-plate collector is a metal box with a glass or plastic cover (called glazing) on top and a dark-colored absorber plate on the bottom. The sides and bottom of the collector are usually insulated to minimize heat loss. Flat-plate collectors are the more commonly used type of collector today. They are arrays of solar panels arranged in a simple plane. They can be of nearly any size, and have an output that is directly related to a few variables including size, facing, and cleanliness. These variables all affect the amount of radiation that falls on the collector. Often these collector panels have automated machinery that keeps them facing the sun. The additional energy they take in due to the correction of facing more than compensates for the energy needed to drive the extra machinery.

Focusing collectors are essentially flat-plane collectors with optical devices arranged to maximize the radiation falling on the focus of the collector. These are currently used only in a few scattered areas. Solar furnaces are examples of this type of collector. Although they can produce far greater amounts of energy at a single point than the flat-plane collectors can, they lose some of the radiation that the flat-plane panels do not. Radiation reflected off the ground will be used by flat-plane panels but usually will be ignored by focusing collectors (in snow covered regions, this reflected radiation can be significant). One other problem with focusing collectors in general is due to temperature. The fragile silicon components that absorb the incoming radiation lose efficiency at high temperatures, and if they get too hot they can even be permanently damaged. The focusing collectors by their very nature can create much higher temperatures and need more safeguards to protect their silicon components.

Please log in to add an answer.