| written 9.5 years ago by | • modified 9.5 years ago |
Let, $ tanh^{-1} (x+iy) \;=\; α+iβ \\ \; \\ \; \\ \therefore α+iβ=tanh^{-1}(x+iy)=\dfrac{i(tanh^{-1}(x+iy)}{i} \\ \; \\ \; \\ = \dfrac{(tanh^{-1}(i(x+iy))}{i} \; \; \; \ldots \{ \because i tanh^{-1}θ= tan^{iθ} \} \\ \; \\ \; \\ \therefore α+iβ \;=\; \dfrac{tanh^{-1}(ix+i^2y)}{i} \;=\; \dfrac{tanh^{-1}(ix-y)}{i} \; \; \; \ldots (i) \\ \; \\ \; \\ We\; can \; prove \; that \; since \; 〖tanh〗^{-1}(x+iy)=α+iβ \; ,hence \; α-iβ=〖tanh〗^{-1}(x-iy) \\ \; \\ \; \\ \therefore α-iβ=tanh^{-1}(x-iy)= i\dfrac{tanh^{-1}(x-iy) }{i} \\ \; \\ \; \\ = {tan^(-1)(i(x-iy)}/{i} \ldots(\because i 〖tanh〗^{-1}θ=〖tan〗^{-1}(iθ) ) \\ \; \\ \; \\ \therefore α-iβ=tan^{-1} \dfrac{〖(ix-i^2 y)〗}{i}/ \;= \; \dfrac{tan^{-1}(ix+y)}{i} \; \; \ldots (ii) \\ \; \\ \; \\ $
Adding equations (I) and (II),
$ \therefore 2α=\dfrac{1}{i} [tan^{-1}(ix-y)+tan^{-1}(ix+y) ]=\dfrac{1}{i} tan^{-1} \dfrac{((ix-y)+(ix+y))}{(1-(ix-y)(ix+y) )} \\ \; \\ \; \\ \ldots \bigg(\because〖tan〗^{-1}A+〖tan〗^{-1}B=〖tan〗^{-1}〖(A+B)/(1-AB)〗 \bigg) \\ \; \\ \; \\ \therefore 2α=\dfrac{1}{i} tan^{-1} \dfrac{2ix}{1-(i^2 x^2-y^2)} \;=\; \dfrac{1}{i} tan^{-1} \dfrac{(i(2x)}{(1+x^2+y^2 )} \;=\; \dfrac{i}{i} tan^{-1} \dfrac{2x}{1+x^2+y^2} \;=\; tan^{-1} \dfrac{2x}{1+x^2+y^2} \\ \; \\ \; \\ \therefore α=\dfrac{1}{2} tan^{-1} \dfrac{2x}{1+x^2+y^2} \\ \; \\ \; \\ $
Now subtracting equation (II) from (I),
$ \therefore 2iβ= \dfrac{1}{i} [tan^{-1}(ix-y)-tan^{-1}(ix+y) ]=\dfrac{1}{i} tan^{-1} \dfrac{((ix-y)-(ix+y))}{(1+(ix-y)(ix+y) )} \\ \; \\ \; \\ \ldots \bigg(\because〖tan〗^{-1}A -〖tan〗^{-1}B=〖tan〗^{-1}〖(A-B)/(1+AB)〗 \bigg) \\ \; \\ \; \\ \therefore 2iβ= \dfrac{1}{i} tan^{-1} \dfrac{-2y}{1+(i^2 x^2-y^2)} \;=\; \dfrac{-1}{i} tan^{-1} \dfrac{(2y)}{1+- x^2-y^2} \\ \; \\ \; \\ \therefore 2β= \dfrac{-1}{i^2} tan^{-1} \dfrac{2y}{1-x^2-y^2}\;=\; tan^{-1}\dfrac{2y}{1-x^2-y^2} \\ \; \\ \; \\ \therefore β= \dfrac{1}{2} tan^{-1}\dfrac{2y}{1-x^2-y^2} \\ \; \\ \; \\ \; \\ \; \\ \therefore tanh^{-1}(x+iy) \;=\; \dfrac{1}{2} tan^{-1}\dfrac{2x}{1+x^2+y^2} + i \bigg[ \dfrac{1}{2} tan^{-1}\dfrac{2y}{1-x^2-y^2} \bigg] $

and 5 others joined a min ago.