(i) Thresholding
Since the image is 3 bit,L=23=8
For Thresholding
$S = \begin{cases} L-1, & r \ge T \\ 0, & \text{otherwse} \end{cases}$
Here,L-1=7,T=4
7 |
0 |
0 |
0 |
0 |
0 |
7 |
7 |
7 |
0 |
0 |
0 |
0 |
7 |
7 |
7 |
(ii) Intensity level slicing with background r1=2 and r2=5:
$S = \begin{cases} L-1, & r1 \gt r \gt r2 \\ r, & \text{otherwse} \end{cases}$
Here,L-1 = 7 , 2 ≤ r ≤ 5
7 |
7 |
7 |
0 |
1 |
7 |
7 |
7 |
7 |
7 |
7 |
1 |
7 |
7 |
6 |
7 |
(iii) Bit plane slicing for MSB and LSB plane:
We convert the original image into a 3-bit binary image
100 |
010 |
011 |
000 |
001 |
011 |
101 |
111 |
101 |
011 |
010 |
001 |
010 |
100 |
110 |
111 |
We create three planes from the bit positions
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
MSB plane
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
LSB plane
(iv) Negation:
Image negative is given by the formula
S=(L-1)- r
Therefore,s=7-r
3 |
5 |
4 |
7 |
6 |
4 |
2 |
0 |
2 |
4 |
5 |
6 |
5 |
3 |
1 |
0 |