u$x+vy=0 \; \; \; \; \therefore x\;=\; \dfrac{-vy}{u}
\\ \; \\ \; \\
\dfrac{u}{x} + \dfrac{v}{y} \;=\; 1
\\ \; \\ \; \\
\dfrac{u}{\dfrac{-vy}{u}} + \dfrac{v}{y} \;=\; 1
\; \; \; \; \;
or \; \;
\dfrac{u^2}{-vy} + \dfrac{v}{y} \;=\; 1
\\ \; \\ \; \\
\therefore
\dfrac{1}{y}
\bigg( v - \dfrac{u^2}{v} \bigg) \;=\; 1
\\ \; \\ \; \\
\therefore
y \;=\; \dfrac{v^2-u^2}{v}
\\ \; \\ \; \\
\therefore
\bigg( \dfrac{\partial y}{\partial v} \bigg)_u \;=\;
\dfrac{ v(2v)-(v^2-u^2)(1) }{v^2} \;=\;
\dfrac{ 2v^2-v^2+u^2 }{ v^2 } \;=\;
\dfrac{v^2+u^2}{v^2}
\\ \; \\ \; \\
\therefore
\dfrac{v}{y} \bigg( \dfrac{\partial y}{\partial v} \bigg)_u \;=\;
\dfrac{v}{y} \bigg(
\dfrac{v^2+u^2}{v^2}
\bigg) \;=\;
\dfrac{v^2+u^2}{yv} \; \; \; \; \ldots (i)
\\ \; \\ \; \\ \; \\
ux+vy=0 \; \; \; \; \therefore y\;=\; \dfrac{-ux}{v}
\\ \; \\ \; \\
\dfrac{u}{x} + \dfrac{v}{y} \;=\; 1
\\ \; \\ \; \\
\therefore \dfrac{u}{x} + \dfrac{v}{\dfrac{-ux}{v}} \;=\; 1
\\ \; \\ \; \\
\therefore \dfrac{u}{x} + \dfrac{v^2}{-ux} \;=\; 1
\\ \; \\ \; \\
\therefore
\dfrac{1}{x}
\bigg( u - \dfrac{v^2}{u} \bigg) \;=\; 1
\\ \; \\ \; \\
\therefore
x \;=\; \dfrac{u^2-v^2}{u}
\\ \; \\ \; \\
\therefore
\bigg( \dfrac{\partial x}{\partial u} \bigg)_v \;=\;
\dfrac{ u(2u)-(u^2-v^2)(1) }{u^2} \;=\;
\dfrac{ 2u^2-u^2+v^2 }{ u^2 } \;=\;
\dfrac{u^2+v^2}{u^2}
\\ \; \\ \; \\
\therefore
\dfrac{u}{x} \bigg( \dfrac{\partial x}{\partial u} \bigg)_v \;=\;
\dfrac{u}{x} \bigg(
\dfrac{v^2+u^2}{u^2}
\bigg) \;=\;
\dfrac{v^2+u^2}{xu} \; \; \; \; \ldots (ii)
\\ \; \\ \; \\ \; \\
$
From (i) and (ii)
$
\therefore
\dfrac{u}{x} \bigg( \dfrac{\partial x}{\partial u} \bigg)_v +
\dfrac{v}{y} \bigg( \dfrac{\partial y}{\partial v} \bigg)_u \;=\;
\dfrac{v^2+u^2}{xu} + \dfrac{v^2+u^2}{xu}
\\ \; \\ \; \\
= (u^2+v^2) \bigg[ \dfrac{1}{xu} + \dfrac{1}{xu} \bigg]
\;=\;
= (u^2+v^2) \bigg[ \dfrac{ux+vy}{xuyv} \bigg] \;=\; (u^2+v^2) (0)
\\
\{ \because ux+vy=0 \}
\\ \; \\ \; \\ \; \\ \; \\ \; \\
\dfrac{u}{v} \bigg( \dfrac{ \partial x}{ \partial u} \bigg)_v \;+\;
\dfrac{v}{y} \bigg( \dfrac{ \partial y}{ \partial v} \bigg)_u \;=\; 0
\; \; \; \; \;
Hence Proved.
$