1
4.3kviews
If $ tan \Big[ log(x+iy) \Big] \;=\; a+ib , $ prove that $ tan[log(x^2+y^2)] \;=\; \dfrac{2a}{1-a^2-b^2} \; \; \; where \; a^2+b^2 \ne 1 $
1 Answer
0
45views

t$an \Big[ log(x+iy) \Big] \;=\; a+ib \\ \; \\ \; \\ \therefore log(x+iy) \;=\; tan^{-1} (a+ib) \; \; \; \; \ldots (i) \\ \; \\ \; \\ log(x-iy) \;=\; tan^{-1} (a-ib) \; \; \; \; \ldots (ii) \\ \; \\ \; \\ $

Adding equations (i) \& (ii)

$ log(x+iy) …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.