| written 9.5 years ago by |
Consider $ \Bigg[ \dfrac{bi-1}{bi+1} \Bigg] \;=\; \Bigg[ \dfrac{bi+i^2}{bi-i^2} \Bigg] \;=\; \dfrac{i(b+i)}{i(b-i)} \;=\; \dfrac{b+i}{b-i} \\ \; \\ \; \\ Let, \; b+i=re^{i\phi} \; \; \therefore b-i=re^{-i\phi} \; \; where \; r=\sqrt{b^2+1} \; \; and \; \; \phi \;=\; tan^{-1} \bigg( \dfrac{1}{b} \bigg) \;=\; cot^{-1}b \\ \; \\ \; \\ \Bigg[ \dfrac{bi-1}{bi+1} \Bigg]^{-a} \;=\; \Bigg[ \dfrac{re^{i\phi}}{re^{-i\phi}} \Bigg]^{-a} \;=\; [e^{2i\phi}]^{-a} \;=\; e^{-2ai\phi} \;=\; e^{-2aicot^{-1} b } \\ \; \\ \; \\ Now, \; L.H.S \; \; e^{2aicot^{-1} b } \Bigg[ \dfrac{bi-1}{bi+1} \Bigg]^{-a} \;=\; e^{2aicot^{-1} b } \; \cdot \; e^{-2aicot^{-1} b } \;=\; e^0 \;=\; 1 \\ \; \\ = \; R.H.S \\ \; \\ $
Hence Proved.

and 4 others joined a min ago.