| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > First Year Engineering > Sem 1 > Applied Maths 1
Marks : 6 M
Year : May 2015
| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > First Year Engineering > Sem 1 > Applied Maths 1
Marks : 6 M
Year : May 2015
| written 9.4 years ago by | • modified 9.4 years ago |
We know that
$(cos7θ+i sin7θ )=〖(cosθ+i sinθ)^7 \ldots By \; De Moivre' s \; theorem \\ \; \\ \; \\ \therefore (cos7θ+i sin7θ ) \;=\; \\ cos^7 θ+7cos^6 θi sinθ+21cos^5 θi^2 sin^2 θ+35cos^4 θi^3 sin^3 θ+35cos^3 θi^4 sin^4 θ \\ \; \\ \; \\ \therefore (cos7θ+i sin7θ ) \;=\; cos^7 θ+i(7cos^6 θ sinθ)-21cos^5 θsin^2 θ-i(35cos^4 θsin^3 θ) \\ +35cos^3 θsin^4 θ +i(21cos^2 θsin^5 θ)-7 cosθ sin^6 θ-isin^7 θ \\ \; \\ \; \\ $
Separating Real and Imaginary Parts,
$ \therefore (cos7θ+i sin7θ )=(cos^7 θ-21cos^5 θsin^2 θ+35cos^3 θsin^4 θ-7 cosθ sin^6 θ) \\ +i(7cos^6 θ sinθ-35cos^4 θsin^3 θ+21cos^2 θsin^5 θ-sin^7 θ) \\ \; \\ \; \\ \therefore sin7θ=7cos^6 θ sinθ-35cos^4 θsin^3 θ+21cos^2 θsin^5 θ-sin^7 θ \\ =7(cos^2 θ)^3 sinθ-35(cos^2 θ)^2 sin^3 θ+21(1-sin^2 θ)sin^5 θ-sin^7 θ \\ \; \\ \; \\ \therefore sin7θ=7 (1-sin^2 θ)^3 sinθ-35(1-sin^2 θ)^2 sin^2 θ sinθ +21(1-sin^2 θ) sin^4 θ sinθ-sin^6 θ sinθ \\ \; \\ \; \\ \therefore \dfrac{sin7\theta}{sin\theta} =7(1-sin^2 θ)^3-35(1-sin^2 θ)^2 sin^2 θ+ 21(1-sin^2 θ) sin^4 θ-sin^6 θ \\ \; \\ \; \\ \therefore \dfrac{sin7\theta}{sin\theta} =7(1-3sin^2 θ+3sin^4 θ-sin^6 θ) \\ -35(1-2sin^2 θ+sin^4 θ) sin^2 θ+21sin^4 θ-21sin^6 θ-sin^6 θ \\ \; \\ \; \\ \therefore \dfrac{sin7\theta}{sin\theta} =7-21sin^2 θ+21sin^4 θ-7sin^6 θ-35sin^2 θ+ 70sin^4 θ-35sin^6 θ+21sin^4 θ-21sin^6 θ-sin^6 θ \\ \; \\ \; \\ \; \\ \therefore \dfrac{sin7\theta}{sin\theta} =7-56sin^2 θ+112sin^4 θ-64sin^6 θ $