| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > Electronics and Telecommunication > Sem 4 > Applied Maths 4
Marks: 5M
Year: May 2015
| written 9.4 years ago by | modified 3.9 years ago by |
Mumbai University > Electronics and Telecommunication > Sem 4 > Applied Maths 4
Marks: 5M
Year: May 2015
| written 9.4 years ago by |
We have $f = \frac{\sqrt{1 + (y')^2}}{x}dx$
Since f does not contain any explicitly we shall use $\frac{\partial f}{\partial y'} = c$
$$\frac{\partial f}{\partial y'} = \frac{1}{x} \frac{\partial}{\partial y'} \bigg[1 + (y')^2\bigg]^{\frac{1}{2}} = \frac{1}{x} \frac{1}{2} \frac{2y'}{\sqrt{1 + (y')^2}}$$
But $\frac{\partial f}{\partial y'} = c$
$\therefore c = \frac{y'}{x\sqrt{1 + (y')^2}} \\ (cx)^2 (1 + (y')^2) = (y')^2 \\ \therefore c^2 x^2 + c^2 x^2 (y')^2 = (y')^2 \\ (y')^2 = \frac{cx}{1 - c^2 x^2} \\ y' = \frac{cx}{\sqrt{1 - c^2 x^2}}$
Now integrating both sides we get
$y = \int\frac{cx}{\sqrt{1 - c^2 x^2}}dx$
Let $1 - c^2 x^2 = t \therefore -2dx = dt$
$\therefore$ substituting we get
$y = -\frac{1}{2} \int \frac{cdt}{\sqrt{t}} \\ \therefore y = \frac{-c}{2} \frac{\sqrt{t}}{\frac{1}{2}} \\ \therefore y = -c\sqrt{t}$
Re-substituting the value we get,
$y = -c\sqrt{1 - c^2 x^2} + c_{2}$