| written 9.5 years ago by | • modified 9.5 years ago |
Mumbai University > COMPS > Sem 4 > Applied Mathematics 4
Marks : 06
Year : DEC 2014
| written 9.5 years ago by | • modified 9.5 years ago |
Mumbai University > COMPS > Sem 4 > Applied Mathematics 4
Marks : 06
Year : DEC 2014
| written 9.5 years ago by | • modified 9.5 years ago |
Let $λ$ given value of matrix A. $$\text { Characteristic equation is} |A-λI|=0$$
$$\therefore \begin{bmatrix} 5-λ & -6 & -6 \\ -1 & 4-λ & 2 \\ 3 & -6 & -4-λ \\ \end{bmatrix}=0$$
on solving we get
$$λ^3-(5+4-4)λ^2+(-4-2+14)λ-4=0$$
$\therefore λ^3-5λ^2+8λ-4=0$
$\therefore $ Eigen value$(λ)$ are $1,2,2$
Let $f(x)=(x-1)(x-2)=x^2-3x+2$
Now $A^2=A\times A$
$$=\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \\ \end{bmatrix}=0\times \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \\ \end{bmatrix}=\begin{bmatrix} 13 & -18 & -18 \\ -3 & 10 & 6 \\ 9 & -18 & -14 \\ \end{bmatrix}$$
$$\therefore A^2-3A+2I$$
$$=\begin{bmatrix} 13 & -18 & -18 \\ -3 & 10 & 6 \\ 9 & -18 & -14 \\ \end{bmatrix}-3\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \\ \end{bmatrix}+2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}$$
$$=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}$$
$$=0$$
$\therefore f(x)=x^2-3x+2$ annihilates A
$\therefore f(x)$ is a minimal polynomial.
Degree of f(x) < order of A
$\therefore $ Matrix A is derogatory