| written 9.4 years ago by | • modified 9.4 years ago |
Maximize $z = 8x_1 + 10x_2 – x_1^2 – x_2^2$
Subject to $3x_1 + 2x_2 ≤ 6 \\ X_1, x_2 ≥ 0 $
Mumbai University > COMPS > Sem 4 > Applied Mathematics 4
Marks : 08
Year : MAY 2014
| written 9.4 years ago by | • modified 9.4 years ago |
Maximize $z = 8x_1 + 10x_2 – x_1^2 – x_2^2$
Subject to $3x_1 + 2x_2 ≤ 6 \\ X_1, x_2 ≥ 0 $
Mumbai University > COMPS > Sem 4 > Applied Mathematics 4
Marks : 08
Year : MAY 2014
| written 9.4 years ago by | • modified 9.4 years ago |
Let $f(x_1,x_2)=8x_1+10x_2-x_1^2-x_2^2;$
$h=3x_1+2x_2-6$ and $\lambda$ be Lagrangian Multiplier
$\therefore $ Lagrangian function $L=f- \lambda h\\ \therefore L=(8x_1+10x_2-x_1^2-x_2^2)-\lambda(3x_1+2x_2-6)\\ =8x_1+10x_2-x_1^2+x_2^2-3\lambda x_1 -2\lambda x_2+6 \lambda$
Kuhn_Tucker (K-H) conditions are,
$i)\dfrac {\partial L}{\partial x_2}= 0\Rightarrow 10-2x_2-2\lambda =0\\ \therefore 0x_1+2x_2+2\lambda =10 \\ ii) \dfrac {\partial L}{\partial x_1}= 0\Rightarrow 8-2x_1-3\lambda =0\\ \therefore 2x_1+0x_2+3\lambda =8 \\ iii) \lambda h (x_1,x_2)=0\Rightarrow \lambda (3x_1+2x_2-6)=0\\ iv) h(x_1,x_2)=0\Rightarrow (3x_1+2x_2-6) \leq 0 \\ v) \lambda , x_1,x_2\geq 0$
from K-H condition (3), following 2 cases arises
Case 1:
$\lambda =0$
From (1) , $2x_1=8 \therefore x_1=4$
From (2), $2x_2=10 \therefore x_2=5 $
Substitute $x_1$ and $x_2$ in (4)
$$LHS=3(4)+2(5)-6=16 ≠0$$
Value of $x_1$ and $x_2$ do not satisfy K-H condition (4)
$\therefore $ we reject this case.
Case 2:$\lambda ≠0$
From (3), $3x_1+2x_2-6=0 \\ 3x1+2x2+0=0\lambda =6------------------------ (6)$
Solving (1),(2) and (6) Simultaneously we get
$x_1=\dfrac 4{13};x_2=\dfrac {33}{13}; \lambda =\dfrac {32}{13} $
values of $x_1$ and $x_2$ satisfies K-H condition (4) and (5)
$\therefore $ Stationary point $x_0=\Bigg(\dfrac 4{13},\dfrac {33}{13}$
since $\lambda \gt 0$, Z is maximum at $X_0$
Maximum value of $X_0=Z_{max}$
$$=8\times \dfrac 4{13}+10 \times \dfrac {33}{13}-\Bigg(\dfrac 4{13}\Bigg)^2 -\Bigg(\dfrac {32}{13}\Bigg)^2 \\ =\dfrac {277}{13} \\ =21.3077$$