0
1.5kviews
Using duality solve the following L.P.P.

Maximize $z = 5x_1 – 2x_2 + 3x_3$

Subject to $ 2x_1 + 2x_2 – x_3 ≥ 2 \\ 3x_1 – 4x_2 ≤ 3 \\ X_1 + 3x_3 ≤ 5 \\ X_1, x_2, x_3 ≥ 0$

Mumbai University > COMPS > Sem 4 > Applied Mathematics 4

Marks : 06

Year : MAY 2015

1 Answer
0
14views

when primal is of maximization type, the constraints should be of “≤” type.

So multiplying first constraint by ‘-1’ we have,

$-2x_1-2x_2+x_3 ≤ -2$

Primal:

Maximize $z=5x_1-2x_2+3x_3$

constraints

$-2x_1+2x_2+1x_3 \leq -2; \\ 3x_1 -4x_2+0x_3 \leq 3; \\ 1x_1+0x_2+3x_3 \leq 5 ; \\ x_1,x_2,x_3 \geq 0$

The dual of given primal is

Minimize $w=-2y_1-3y_2+5y_3$

Constraints:

$-2y_1+3y_2+1y_3 \geq 5 \\ -2y_1-4y_2+0y_3 \geq -2 \\ i.e.\\ 2y_1+4y_2 00y_3 \geq 2; \\ 1y_1+0y_2 + 3y_3 \geq 3; \\ y_1,y_2,y_3 \geq 0;$

Dual in standard form,

Maximize

$w'=-2=2y_1-3y_2-5y_3; \\ i.e\\ w'=2y_1-3y_2-5y_3+0s_1+0s_2+0s_3 -MA_1-MA_3;$

Constraints:

$-2y_1+3y_2+1y_3-1s_1+0s_2+0s_3+1A_1+0A_3= 5; \\ 2y_1+4y_2- 0y_3+0s_1+1s_2+0s_3 +0A_10A_3=2; \\ 1y_1+0y_2 + 3y_3 + 0s_1+0s_2 -1s_3 +0A_1+ 1A_3=3 \\ y_1,y_2,y_3,s_1,s_2,s_3,A_1,A_2 \geq 0$

enter image description here

enter image description here

Since all values of ∆j are negative or zero and Artificial variable (M) remain in solution the dual of given LPP has infeasible solution.

So, primal of given LPP has unbounded solution

Please log in to add an answer.