| written 9.4 years ago by |
Characteristic equation is | A- λ I | =0
$ \left| \begin{array}{ccc} 2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda \end{array}\right| $
∴ (2- λ) [(3-λ)(2-λ)-2]-2[(2-λ)+1]+1[2-(3-λ)]=0
∴$ (2- λ)[6-5λ+ λ^2-2]-2[1-λ]+ λ-1=0$
∴ $(2- λ)[ λ^2-5λ+4]+2λ-2+ λ-1=0$
∴ $2λ^2-10λ+8-λ^3+5λ^2-4λ+3λ-3=0$
∴$-λ^3+7λ^2-11λ+5=0$
∴ λ=5,1,1
∴ The eigen values λ are 5,1,1
Case 1 , when λ=5
| A- λ I | X=0
$ \left[ \begin{array}{ccc} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{array}\right] \left[ \begin{array}{ccc} X_1 \\ X_2 \\ X_3 \end{array}\right] \;=\; \left[ \begin{array}{ccc} 0 \\ 0 \\ 0 \end{array}\right] $
∴ $-3 X_1+2 X_2+X_3 = 0$ and $- X_1-2 X_(2 )+X_3 = 0$
Using Cramer’s Rule :
$ \dfrac{X_1}{ \left| \begin{array}{cc} -2 & 1 \\ -2 & 1 \end{array}\right| } \;=\; \dfrac{X_2}{ \left| \begin{array}{cc} -3 & 1 \\ 1 & 1 \end{array}\right| } \;=\; \dfrac{X_3}{ \left| \begin{array}{cc} -3 & 2 \\ 1 & -2 \end{array}\right| } \\ \dfrac{X_1}{ 4} \;=\; \dfrac{-X_2}{ -4} \;=\; \dfrac{X_3}{ 4} $
∴ Eigen vector $X_1=[1 \; 1 \; 1 ]$ for eigen value 5
Case 2 , when λ=1
| A- λ I | X=0
$ \left[ \begin{array}{ccc} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{array}\right] \left[ \begin{array}{ccc} X_1 \\ X_2 \\ X_3 \end{array}\right] \;=\; \left[ \begin{array}{ccc} 0 \\ 0 \\ 0 \end{array}\right] $
∴ $R_3- R_1$ and $R_2- R_1$ , we get
∴ $X_1+2 X_2+X_3 = 0$ ---------------(1)
∴ Here rank = 1 and number of unknown = 3
∴ 3 -1 = 2
∴ Let $X_1=1$ and $X_2=0$
∴ $X_3= -1$
∴ Eigen vector $X_2$=[1 ,0 ,-1 ]
Similarly , Let $X_1$=0 and $X_2$=1
∴ $X_3$=2
∴ Eigen vector $X_3$=[0 ,1 ,2 ]
∴ Eigen vector is [1 0 -1] and [0 1 2 ] for eigen value 1
Given f(A)= $A^3$+1
∴ f(λ)= $λ^3$+1
When λ=5 ,f(5)= $5^3$+1=126
When λ=1 ,f(1)= $1^3$+1=2
∴ Eigen values of $A^3$+I are 126 ,2,2 and
Eigen vectors are
$ X_1$=[1 1 1 ]
$X_2$=[1 ,0 ,-1 ]
$X_3$=[0 ,1 ,2 ]

and 5 others joined a min ago.