0
8.5kviews
Find the current through $6\Omega$ resistor using superposition theorem.

enter image description here

1 Answer
0
611views

(I) Consider 4A current source.

enter image description here $I_{6\Omega}^1=\dfrac{I_1(5)}{6+5}.......(1)$

enter image description here $(5^{-1}+6^{-1})^{-1}=2.727 \Omega$

enter image description here $(2+2.727)=4.727 \Omega$

$$I_1=\dfrac{4(10)}{[10+4.727]}=2.716 A \\ From(1) \\ I_{6\Omega}^1=\dfrac{(2.716)(5)}{11}1.234 A (\downarrow)$$

II) Consider 10V voltage source:

enter image description here

enter image description here $(5^{-1}+6^{-1})^{-1}=2.727 \Omega$

enter image description here

$$I=\dfrac{10}{(10+4.727)}=0.679 A \\ I_{6\Omega}^{11}=\dfrac{I(5)}{(6+5)}=0.3086A(\uparrow)$$

III) Consider 3A current source;

enter image description here

$$I_{6\Omega}^{111}=\dfrac{3(3.529)}{6+3.259}=1.111A(\downarrow)$$

IV) By using superposition theorem

Source Current
4 A current source I6Ω1=1.234 A(↓)
10 V current source I6Ω11=0.03086 A(↑)
3 A current source I6Ω111=1.111 A(↓)

$I6Ω1 = (1.234-0.3086+1.111) A(↓) \\ I6Ω = 2.0364 A$

Please log in to add an answer.