| written 9.4 years ago by | modified 3.8 years ago by |
Mumbai University > Mechanical Engineering > Sem 4 > Applied Mathematics IV
Marks : 5 M
Year : Dec 2015
| written 9.4 years ago by | modified 3.8 years ago by |
Mumbai University > Mechanical Engineering > Sem 4 > Applied Mathematics IV
Marks : 5 M
Year : Dec 2015
| written 9.4 years ago by |
The characteristic equation is $ \left[ \begin{array}{ccc} 2-\lambda & 0 & -1 \\ 0 & 2-\lambda & 0 \\ -1 & 0 & 2-\lambda \end{array}\right] \;=\; 0 $
∴$ (2- λ)[(2-λ)^2-0]-0 [0-0]-1[0—1)(2-λ)=0$
∴$ 8 - 12 λ+6λ^2- λ^3+ λ-2=0$
∴$ - λ^3+6λ^2-11λ+6=0$
∴$ λ^3-6λ^2+11λ-6=0$------(1)
Let λ=1 on L.H.S of equation (1)
= 1-6+11-6 = 0
∴ (λ-1) is one of the factor.
Now by synthetic division ,
$ \begin{array}{cc|ccc} 1 & & 1 & -6 & 11 & -6 \\ & & & 1 & -5 & 6 \end{array} \\ \overline{ \hspace{10 cm}} \\ \begin{array}{cc|ccc} \hspace{0.3 cm} & & 1 & -5 & 6 & 0 \end{array} $
∴ $(λ-1) (λ^2-5 λ+6)=0$
∴(λ-1)(λ-2) (λ-3) = 0
∴ λ=1,2,3
∴ Eigen values are 1 ,2, 3