0
2.2kviews
Find the value of current flowing through the $5\Omega$ resistance using superposition theorem.
1 Answer
| written 9.5 years ago by | • modified 9.5 years ago |
→ Consider 24V supply

$10Ω||10Ω=5Ω$

I15Ω=2.4A(→)
→ Consider 2A current source

Apply KVL at X
$\dfrac{V_x-0}{5}-2+\dfrac{V_x-0}{10}+\dfrac{V_x-0}{10}=0 \\ V_x[5^{-1}+10^{-1}+10^{-1}]=2 \\ V_x=5V \\ I_{5\Omega}^{11}=\dfrac{(V_x-0)}{5} \\ I_{5\Omega}^{11}=1A(\leftarrow)$
→ Consider 10V supply

$5Ω||10Ω=3.333Ω$

$I=\dfrac{10}{13.333}=0.75A \\ I=0.75A \\ I1115Ω=\dfrac{I×10}{(5+10)} \text{(By current Division Rule)} \\ I1115Ω=0.5A(→)$
| Source | Current |
|---|---|
| 24 V Supply | I15Ω=2.4A(→) |
| 2A Source | $I_{5\Omega}^{11}=1A(\leftarrow)$ |
| 10V Supply | I1115Ω=0.5A(→) |
$\boxed{I5Ω=0.9A(→)}$