$Current = \\
Vs = 60 \lt 0^o \\
Z1= 50 \lt 0^o Ω \\
∴ I1 = Vs/Z1 = 60 \lt 0^o/ 50 \lt 0^o = 1.2 \lt 0^o A \\
Vs= 60 \lt 0^o \\
Z2 = 40 \lt 90^o Ω (0 +j40) \\
∴ I2= 60 \lt 0^o/ 40 \lt 90^o = 1.5 \lt 90^o A \\
Vs= 60 \lt 0o \\
Z3= (0-j80) = 80 \lt - 90^o Ω \\
∴ I3= 60 \lt 0o/ 80 \lt -90^o \\
= 0.75 \lt 90o A \\
\text{Total current-} I= I1 + I2 + I3 \\
= (1.2 + j0) + (0-j1.5) + (0+ j0.75) \\
∴ I= (1.2 – j0.75) = 1.42\lt -32o Amp$
Proof: I= V * Y
Y1 $= 1/Z1 = 1/ 50 \lt 0o = 0.02 \lt 0^o \\
= 0.02+j0) s$
Y2 $= 1/ Z2 = 1/ 40\lt90o =0.025 \lt-90^o \\
= (0-j0.025)S$
Y3 $= 1/Z3 = 1/80\lt-20o = 0.0125 \lt 90o S \\
= (0+j0.0125)S$
∴ Y= Y1 + Y2 +Y3
= 0.02 – j0.025 + j0.0125
= 0.02 – j0.0125
=0.0236 < $-32^oS$
I= V* Y
I = 60<0o * 0.236 <-32o
I = 1.42< - 32o Amp