0
2.5kviews
A resistance of $10\Omega$ and pure coil of inductance 31.8 m H are connected in parallel across 200V1 50Hz supply. Find the total current and power factor.
1 Answer
1
183views

enter image description here

$X_L$ $=2 \pi fL \\ =2 \pi (50)(31.8 \times 10^{-3}) \\ =9.99 \Omega$

$\mathcal{\bar{Z}}_1=(10+j0)\Omega \\ \mathcal{\bar{Z}}_1=10 \angle0 \Omega$ $\hspace{2cm}$ $\mathcal{\bar{Z}}_2=(0+j9.99)\Omega \\ \mathcal{\bar{Z}}_2=9.99 \angle90 \Omega$

$\mathcal{\bar{z}}_T=\mathcal{\bar{Z}}_1 || \mathcal{\bar{Z}} _2 \\ \mathcal{\bar{Z}}_T=\dfrac{\mathcal{\bar{Z}}_1 \mathcal{\bar{Z}}_2}{\mathcal{Z}_1+\mathcal{Z}_2} \\ \bar{Z}_T=\dfrac{(10\angle0)(9.99\angle90)}{(10 \angle0+9.99\angle90)} \\ \bar{Z}_T=\dfrac{99.9\angle90}{(10+j9.99)} \\ \bar{Z}_T=\dfrac{99.9\angle90}{14.135\angle44.971} \\ \bar{Z}_T=\\bigg(\dfrac{99.9}{14.135}\bigg)\angle90.44.971 \\ \bar{Z}=7.0675\angle45.029^0 \\ \bar{I}=\dfrac{\bar{V}}{\bar{Z}_T}=\dfrac{200\angle0}{7.0675\angle45.029}=\dfrac{200}{7.0675}\angle0-45.029 \\ \bar{I}=28.2985\angle-45.029^0 \\ \text{power Factor= cos(45.029)=0.7067(lag)}$

Please log in to add an answer.